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Abstract
A standard method based on the use of differential invariants of a Lie group,
G, enables us to reduce any ordinary differential equation invariant under the
action of G. We show that this method is applicable to vector fields more
general than those associated with Lie symmetries. We characterize all such
vector fields and study their relationship with nonlocal symmetries and λ-
symmetries (Govinder K S and Leach P G L 1995 J. Phys. A: Math. Gen. 28
5349–59, Muriel C and Romero L 2001 IMA J. Appl. Math. 66 111–25).

PACS numbers: 02.30.Hq, 02.20.Sv

1. Introduction and background

Invariance under transformations, an essential feature of the mathematical description of
physical phenomena, often enables the solutions to the equations of mathematical physics to
be obtained by symmetry arguments [5, 18]. For example, a symmetry of a first-order ordinary
differential equation leads to integration by quadrature, while a symmetry of a higher-order
ordinary differential equation leads to a reduction of its order. If a sufficient number of
symmetries of the right type is available then also higher-order ordinary differential equations
may be solved by reduction and quadrature. (These classical results may be found in the
monographs [5, 18] or in the introductory survey [13].)

Let us consider the nth-order ordinary differential equation

�
(
x, u, u(n)

) = 0 (1)

in the unknown u and independent variable x. Here u(n) denotes the set of all derivatives of u
with respect to x up to an order n.
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It is well known that the theory of differential equations may be approached also from a
geometrical point of view. This is achieved by introducing the coordinates

q1 ≡ du/dx, q2 ≡ d2u/dx2, . . . , qn ≡ dnu/dxn

and regarding �(x, u, q1, . . . , qn) = 0 as a manifold S in a suitable space. Any solution,
u = f (x), of (1) represents a curve C which is in S, but not every curve in S corresponds to a
solution of (1). Indeed, solutions of (1) are only those curves C ⊂ S that at all points satisfy
the differential relations

du = q1 dx du(i−1) = qi dx i = 2, . . . , n. (2)

Accordingly, equation (1) may be suitably regarded as a manifold in X × U(n), the nth-order
jet-space of the underlying space X×U. The coordinates of X×U(n) represent the independent
variable, the dependent variable and the derivatives of the dependent variable up to n.

We consider a one-parameter Lie group, G, of point transformations

x∗ = x∗(x, u; ε) = x + εξ(x, u) + O(ε2)

u∗ = y∗(x, u; ε) = u + εη(x, u) + O(ε2)
(3)

acting on an open subset M ⊂ X × U , and the associated vector field, v, defined as

v = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
. (4)

By appealing to the classical Lie point group of transformations, we may extend the vector
field (4) from X × U to the jet-space X × U(n)

v(n) = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+

n∑
i=1

η(i)
(
x, u, u(i)

) ∂

∂ui

. (5)

The contact condition (2) is preserved provided the η(i) satisfy the relations

η(i)
(
x, u, u(i)

) = Dxη
(i−1) − uiDxξ i = 1, . . . , n (6)

where DX denotes the total derivative operator with respect to x.
The vector field (4) is associated with a point symmetry of (1) if and only if

v(n)(�) = 0 when � = 0. (7)

On the other hand a function I (x, u, u1, . . . , un) = c, with c an arbitrary constant, is a first
integral of the characteristic system

dx

ξ
= du

η
= du1

η(1)
= · · · = du1

η(n)
(8)

if and only if

v(n)(I ) ≡ 0. (9)

Consequently, (7) ensures the existence of an analytic function σ such that σ� is a first integral
of the characteristic system associated with (5). Indeed (7) may be rewritten as

v(n)(�) = µ� (10)

where the Lagrange multiplier µ has been introduced; on setting µ = v(n)(σ )/σ , we obtain

v(n)(σ�) ≡ σv(n)(�) + �v(n)(σ ) = 0. (11)

Relation (7) is the computational procedure for finding the most general point symmetry group
of an ordinary differential equation [5, 18]. Under the action of a symmetry group G any point
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on the surface S defined by the differential equation is moved along the manifold, i.e. any
solution of the equation is transformed into another solution of the equation.

The vector field (5) is a special vector field that may be introduced in the jet-space
X ×U(n). In fact, (5) is generated from the vector field (4) defined in X ×U , by a step by step
prolongation in any subspace X ×U(k) ⊂ X ×U(n), (k = 1, 2, . . . , n− 1), which implies that
ξ and η depend only on (x, u), whereas η(k) depends only on (x, u, u(k)). The more general
vector field that can be introduced in X × U(n) is given by

ν(n) = ξ
(
x, u, u(n)

) ∂

∂x
+ η

(
x, u, u(n)

) ∂

∂u
+

n∑
i=1

ζ (i)
(
x, u, u(n)

) ∂

∂ui

. (12)

A generalized vector field, whose definition is given in [5, 18], starts from the expression

v = ξ
(
x, u, u(m)

) ∂

∂x
+ η

(
x, u, u(m)

) ∂

∂u
(13)

with m � 1. The prolongation of (13) in X × U(k) is obtained again by means of formula (6).
Because ξ , η and the various prolongationsη(k) depend, respectively, on x, u and the derivatives
up to the k + m order, these structures are only formally vector fields and the corresponding
v(k) cannot be considered a true vector field in X × U(k). The true structure of the vector field
is preserved only for the special case m = 1 and for the constraint

∂η

∂u1
= u1

∂ξ

∂u1
(14)

(ensuring η(1) = η(1)(x, u, u1)). The symmetries associated with a vector field (13) for m = 1
and satisfying (14) are termed contact or dynamical symmetries [5, 18].

The crucial role of symmetries in the study of ordinary differential equations is illustrated
by a first-order equation possessing a point symmetry G. Its solution may be obtained by
quadrature using the canonical coordinates associated with G. When � = 0 is an nth-order
equation (n > 1) the differential invariants of G (i.e. the invariants of the extended group in
X × U(n)) can be used to reduce the order of the equation by 1. For example, let � = 0 be a
second-order differential equation. The characteristic system associated with the prolongation
of G in X × U(2) is

dx

ξ
= du

η
= du1

η(1)
= du2

η(2)
. (15)

By virtue of relations (6), the complete set of functionally independent integrals for (15) is
given by

w(x, u) = c1 v(x, u, ux) = c2
dv

dw
= c3. (16)

From (7) we conclude that σ� is an integral of (15) and therefore it must be given by

σ� ≡ 
(w, v, dv/dw) = 0 (17)

i.e. the second-order equation � = 0 is reduced to a first-order equation in the unknown v of
the variable w.

The classical examples of reduction recorded in standard textbooks on differential
equations are amenable to invariance arguments (see, for example, [14]) and help to understand
the general belief that every ordinary differential equation which can be reduced to quadratures
possesses the right number of symmetries. Recent apparent counterexamples due to González-
López [8] emphasize the lack of a rigorous proof of this conjecture. Indeed the integrable
equations reported in [8], even though not possessing classical Lie point symmetries, have a
structure rich in nonlocal symmetries [2, 10].
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The idea of nonlocal symmetries in the framework of ordinary differential equations may
be traced to an example by Olver (exercise 2.30, p 184 of [18]), which indicates how to obtain
an ordinary differential equation by symmetry reduction that may gain or lose symmetry
with respect to the unreduced equation. This is usual when the symmetry algebra of the
differential equation is nonsolvable. In [1] it is shown that, at least in some cases, these
hidden (or lost) symmetries can be recovered as nonlocal symmetries, i.e. requiring that the
infinitesimal generators in the vector field (4) may depend on an integral quantity (for example,∫

f (x, u) dx).
The aim of the present paper is to study the reduction of ordinary differential equations by

a direct approach. We consider the standard procedure of reduction based on the differential
invariants of a vector field. We characterize the necessary properties such that a vector field
could be used to reduce a differential equation without considering invariance properties.
Indeed the knowledge of symmetry groups for a given equation � = 0 allows the reduction of
the order inter alia. Symmetry groups form a powerful method for understanding the complete
structure of a differential equation with potential application wider than just reduction of order
by determination of a new system of coordinates.

In section 2 we determine the necessary properties of the first integrals of the characteristic
systems (i.e. the differential invariants) useful for the reduction of ordinary differential
equations. Then we give the characterization of all vector fields possessing the right
characteristic system and study the link between these vector fields, nonlocal symmetries
and λ-symmetries. Section 3 discusses some examples and section 4 contains concluding
remarks.

2. Reduction of order

In the jet-space X × U(n) we define as telescopic any vector field ν(n) with associated
characteristic system

dx

ξ
= du

η
= du1

ζ (1)
= · · · = dun

ζ (n)
(18)

such that ξ2 + η2 �= 0, and whose characteristic curves are given by the system of independent
first integrals

h1(x, u, u1) = c1

h2(x, u, u1) = c2

h3(x, u, u1, u2) ≡ Dxh2(x, u, u1)

Dxh1(x, u, u1)
= c3

...

hi(x, u, u1, u2, . . . , ui−1) ≡ Dxhi−1(x, u, u1, u2, . . . , ui−1)

Dxh1(x, u, u1)
= ci


(19)

where ci are constants, i = 1, . . . , n + 1.
Telescopic vector fields are the key for the standard reduction method. For any differential

equation � = 0, which is an invariant of a telescopic vector field, the reduction procedure
based on the differential invariants may be used. Indeed if � = 0 is an invariant of ν(n),
possessing the complete set of independent integrals h1 = c1, . . . , hn+1 = cn+1, a first integral
σ� must be [6]

σ� ≡ 
(c1, . . . , cn+1) ≡ 


(
h1, h2,

dh2

dh1
,

d2h2

dh2
1

, . . . ,
dn−1h2

dhn−1
1

)
= 0. (20)
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Consequently, we have reduced the nth-order equation � = 0 to an (n − 1)th-order ordinary
differential equation in the unknown h2 of the variable h1. On the other hand, when (20) is
possible then � must be an invariant of a telescopic vector field.

Now we characterize the vector field ν(n) such that the characteristic curves are given by
(19). The vector fields can be defined only up to a multiplicative factor λ, since v and λv have
the same characteristic system.

Theorem 1. In the jet-space X × U(n) a vector field

ν(n) = ξ
∂

∂x
+ η

∂

∂u
+

n∑
i=1

ζ (i) ∂

∂ui

is telescopic if and only if (up to a multiplicative factor)

ξ = ξ(x, u, u1) η = η(x, u, u1) ζ (i) = ζ (i)
(
x, u, u(i)

)
i = 1, . . . , n (21)

where for i = 2, . . . , n

ζ (i)(x, u, u1, . . . , ui) = Dxζ
(i−1) − uiDxξ +

ζ (1) + u1Dxξ − Dxη

η − u1ξ

(
ζ (i−1) − ξui

)
. (22)

Proof. Direct differentiation of equations (19) leads to (21)

h1(x, u, u1) = c1 h2(x, u, u1) = c2 hn(x, u, u1, . . . , un) = cn.

From h1 = c1 and h2 = c2, we have

ξ
∂h1

∂x
+ η

∂h1

∂u
+ ζ (1) ∂h1

∂u1
= 0 (23)

and

ξ
∂h2

∂x
+ η

∂h2

∂u
+ ζ (1) ∂h2

∂u1
= 0. (24)

The matrix (
∂h1
∂x

∂h1
∂u

∂h1
∂u1

∂h2
∂x

∂h2
∂u

∂h2
∂u1

)
(25)

is of maximal rank because h1 = c1, h2 = c2 are independent. From (23) and (24), we
conclude that ξ , η and ζ (1) must depend, at most, on

ξ = ξ(x, u, u1) η = η(x, u, u1) ζ (1) = ζ (1)(x, u, u1). (26)

By differentiation of hi(x, u, u1, . . . , ui) = ci , we have

ξ
∂hi

∂x
+ η

∂hi

∂u
+

i∑
k=1

ζ (k) ∂hi

∂uk

= 0 (27)

and, since ∂hi

∂ui
�= 0, we may put

ζ (i) = −
ξ ∂hi

∂x
+ η ∂hi

∂u
+
∑i−1

k=1 ζ (k) ∂hi

∂uk

∂hi

∂ui

. (28)

Then (21) follows.
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To prove (22) and necessary conditions we consider the action of ν(n) on Dxhi , i.e.

ν(n)(Dxhi) = ξ
∂Dxhi

∂x
+ η

∂Dxhi

∂u
+

i∑
k=1

ζ (k) ∂Dxhi

∂uk

= Dx

(
ξ
∂hi

∂x
+ η

∂hi

∂u
+

i∑
k=1

ζ (k) ∂hi

∂uk

)
− ∂hi

∂x
Dxξ − ∂hi

∂u

(
Dxη − ζ (1)

)
−

i∑
k=2

∂hi

∂uk

(
Dxζ

(k−1) − ζ (k)
)

(29)

and from (27) we have

ν(n)(Dxhi) = −∂hi

∂x
Dxξ − ∂hi

∂u

(
Dxη − ζ (1)

)−
i∑

k=2

∂hi

∂uk

(
Dxζ

(k−1) − ζ (k)
)
. (30)

The functions Dxhi/Dxh1 (i = 2, . . . , n) are first integrals of the characteristic system (18) if
and only if

ν(n)(Dxhi)Dxh1 − ν(n)(Dxh1)Dxhi = 0. (31)

Use of (23), (30) and (31) leads to

ζ (i) = Dxζ
(i−1) − uiDxξ +

ζ (1) + u1Dxξ − Dxη

η − u1ξ

(
ζ (i−1) − uiξ

)
(32)

which completes the proof of the necessary condition. �

That (21) and (22) are sufficient conditions may be verified by a simple and direct
computation based on the relationship

ν(n)(Dxhi) = −λξDxhi .

Relations (21) show that any telescopic ν(i) is indeed a vector field in X × U(i) (i =
1, . . . , n). Expression (22) determines ζ (i) once the three arbitrary functions (26) are given.
Therefore the most general telescopic vector fields are given up to within three arbitrary
functions ξ(x, u, u1), η(x, u, u1), ζ

(1)(x, u, u1) and up to a multiplicative factor.
Let us introduce the functions ρ1 and ρ2 defined by

ρ1(x, u, u1) = ζ (1) + u1ξx − ηx + u1(u1ξu − ηu)

η − u1ξ
(33)

and

ρ2(x, u, u1) = u1ξu1 − ηu1

η − u1ξ
. (34)

We can rewrite ζ (1) as

ζ (1) = Dxη − u1Dxξ + (ρ1 + ρ2u2)(η − ξu1) (35)

and formulae (22) (for i = 2, . . . , n) as

ζ (i) = Dxζ
(i−1) − uiDxξ + (ρ1 + ρ2u2)

(
ζ (i−1) − ξui

)
. (36)

Now the arbitrary elements are ξ , η and ρ1.
The following trivial relationship between η(i) and ζ (i) exists:

ζ (1) = η(1) + (ρ1 + ρ2u2)(η − ξu1)

...
...

ζ (k) = η(k) + (ρ1 + ρ2u2)
(
ζ (k−1) − ξuk

)
.

(37)

From (37) a direct relationship between telescopic vector fields and previously considered
vector fields can be easily established. Indeed
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• when ρ1 = ρ2 = 0 and ξ2
u1

+ η2
u1

�= 0 telescopic vector fields are the same as the vector
fields of contact symmetries;

• when ρ1 = 0 and ξ2
u1

+ η2
u1

= 0 telescopic vector fields are the same as the vector fields
of classical point symmetries;

• when ρ1 �= 0 and ξ2
u1

+ η2
u1

= 0 telescopic vector fields are the same as the vector fields
of λ-symmetries (introduced in section 2 of [16]).

We conclude that telescopic vector fields are more general than the vector fields already
introduced in the literature in relation to classical invariance properties of differential equations.

When the arbitrary functions appearing in the definition of telescopic vector fields, ν(n),
are chosen such that σ� is a first integral of the corresponding characteristic system, we
require that

ν(n)(σ�) ≡ 0 (38)

i.e.

ν(n)(�) ≡ 0 when � = 0. (39)

Once an ordinary differential equation, � = 0, is given and a solution, ξ̂ , η̂, ρ̂1 (or ζ̂1) of
(38) is found it is possible to reduce � = 0 by determining the solution of the characteristic
subsystem consisting of the first two equations in (18). If ξ̂ , η̂ do not depend on u1, the
algorithm is simplified because this subsystem consisting of the first two equations in (18) is
uncoupled.

Telescopic vector fields seem to be the natural framework for the study of reduction
methods based on differential invariants. In this respect it is very important to note that from
the defining relation (32) of the ζ (i) (i = 2, . . . , n) we may scale the three arbitrary functions
by an arbitrary factor γ :{

ξ, η, ζ (1)
} → {

γ ξ, γ η, γ ζ (1)
}

(40)

and use definition (32) to obtain the following relation:

ζ (i)
{
γ ξ, γ η, γ ζ (1)

} = γ ζ (i)
{
ξ, η, ζ (1)

}
. (41)

Therefore the telescopic vector field ν associated with {ξ, η, ζ (1)} and the vector field νγ

associated with {γ ξ, γ η, γ ζ (1)} must be related by

ν(n)
γ = γ ν(n). (42)

Because γ may depend on u(r), (r ∈ N), (42) may be used to rewrite a given vector field in an
equivalent format. This property may be used to endow a formal vector field (i.e. a generalized
vector field that strictly speaking does not belong to the jet-space) with the format of a true
vector field. For example, the nonlocal vector field named exponential by Olver in [18], is
obtained on selecting

γ =
∫

P(x, u) dx ξ = ξ(x, u) η = η(x, u) (43)

and

ζ (1) = Dxη − u1Dxξ + P(x, u)(η − ξu1) (44)

and may be pushed back to the jet-space. If we consider the parametric form (35) this means
ρ1 = P(x, u) and we recover the observation by Muriel and Romero on the relationship
between an exponential nonlocal vector field and λ-symmetries [16]. In any case (43) and
(44) allow a nice generalization of the exponential vector field that may be used to reduce
an ordinary differential equation. Here, our more general dependences ξ = ξ(x, u, u1)
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and η = η(x, u, u1) give

P = ρ1 + ρ2u2 (45)

where ρ1(x, u, u1) is arbitrary and ρ2 is as in (34).

3. Examples

The first example is about the differential equation

� ≡ 2xu1u2 − (x + 1)u2
1 + 2x2(u − u1) = 0. (46)

By computation of

ν(2)(�) ≡ 0

we obtain[
2u1u2 − u2

1 + 4x (u − u1)
]
ξ + 2x2η + 2

(
xu2 − (x + 1)u1 − x2) ζ (1) + 2xu1ζ

(2) = 0. (47)

In (47) ζ (2) is defined in (36) for i = 2.
It is possible to check that the telescopic vector field with components

ξ ≡ 0 η = ux ζ (1) = x (48)

and

ζ (2) = 1 +
x − u2

u1
x (49)

is a simple solution of (47).
The vector field (48) can neither be associated with a point symmetry nor with a λ-

symmetry, because ∂η/∂ux �= 0 and also cannot be associated with a generalized symmetry
because ζ (1) �= η(1). In any case, computing the differential invariants of (48) as

x = h1 xu − u2
1

2
= h2

equation (46) is reduced to

h1
dh2

dh1
− (h1 + 1)h2 = 0.

The second example is more involved. In two very recent papers [8, 17] the integration
of the equation

u3 + uu2 − 3
2u2

1 = 0 (50)

is considered. Equation (50) is a special case of the Chazy equation

u3 + uu2 + ku2
1 = 0 (51)

and admits three Lie point symmetries

v1 = ∂

∂x
v2 = x

∂

∂x
− u

∂

∂u
v3 = x2 ∂

∂x
+ (12 − 2xu)

∂

∂u
(52)

which form a representation of the nonsolvable algebra sl(2, R).
When a third-order equation is invariant under the action of a three-dimensional solvable

Lie algebra it is possible by standard methods to reduce it to first order, because the symmetries
are conserved in the reduction procedure [5, 18]. In the case of (50) because the algebra
generated by (52) is nonsolvable, standard methods of reduction fail, since, after the first
reduction, at least one symmetry obtained by the remaining generators disappears. In [17]
it is shown how these generators may be recovered by means of a new class of symmetries,



On the reduction methods for ordinary differential equations 6153

introduced in [16] and named λ-symmetries. The Chazy equation then may be reduced step
by step. On the other hand, the remaining generators may be recovered by considering [7]
nonlocal symmetries (of exponential type) enabling the Chazy equation again to be reduced
step by step. Moreover, the initiation of the process of order reduction need not be a point
(or a contact) symmetry. Instead, it is possible to start the reduction with a nonlocal symmetry
or λ-symmetry.

For example, when k = 1, (51) admits the nonlocal symmetries related to the vector fields
(see [8])

v4 = exp

[
−
∫

u dx

]
∂

∂u

v5 = exp

[
−
∫

u dx

]∫
exp

[∫
u dx

]
∂

∂u
(53)

v6 = exp

[
−
∫

u dx

]
exp

[
x

∫
u dx

]
∂

∂u
.

In the special case considered here the vector fields (53) may be easily determined. Let us
consider

v = η
∂

∂u
(54)

whose prolongation is

v(3) = η
∂

∂u
+ Dx(η)

∂

∂u1
+ Dxx(η)

∂

∂u2
+ Dxxx (η)

∂

∂u3
. (55)

On expanding

v(3)
(
u3 + uu2 + ku2

1

) = 0

we obtain

Dxxx(η) + Dxx(η)u + ηu2 + 2Dx(η)u1 = 0 (56)

or in more compact form

Dxx[Dx(η) + ηu] = 0. (57)

The determining equation (56) has been obtained for an arbitrary dependence of η. It is easy
to check that the vector fields (53) are trivial solutions of (57). We point out that equation (57)
is not restricted with respect to the manifold of the solutions of equation (51).

By using v4, which is a telescopic vector field, and the differential invariants

y = x v = u1 + 1
2u2

it is possible to reduce (51) to the simple equation d2v/du2 = 0.
Since v4 is a telescopic vector field, the approaches in [8, 17] must be equivalent. To

show this we consider the equation for telescopic symmetries of (51), i.e.

ζ (3) + ηu2 + uζ (2) + 2u1ζ
(1) = 0. (58)

It is easy to check that

ξ(x, u) ≡ 0 λ = −u η = 1 (59)

and that the corresponding prolongations

ζ (1) = −u ζ (2) = −u1 + u2 ζ (3) = −u2 + 3uu1 − u3 (60)

are a solution of (58). It is clear on choosing γ = exp
[− ∫

u dx
]

that (59) is the λ-symmetry
vector field corresponding to v4.
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The vector fields v5 and v6 are not telescopic vector fields and appear to have no role in
reducing the order of (51).

4. Concluding remarks

Theorem 1 extends the vector field in the jet-space for the purpose of reducing the order of
an ordinary differential equation. Our paper is clearly related to that by Muriel and Romero
on λ-symmetries [16], but as already stated telescopic vector fields are more general and our
direct approach establishes not only a sufficient condition (as in [16]) but also a necessary
condition.

Moreover, we have clarified the relationship of telescopic vector fields and nonlocal
symmetries and emphasized that symmetries effective in the reduction of ordinary differential
equations can be rewritten as telescopic vector fields. This does not mean that telescopic
vector fields are strictly equivalent to nonlocal symmetries (which were introduced many
years before the telescopic vector fields and λ-symmetries). The main difference is about their
determination. It is well known that there is no systematic approach to the determination of
nonlocal symmetries, whereas we have an efficient algorithm to compute telescopic vector
fields. This, obviously, does not mean that we are always able to solve the determining
equations of telescopic vector fields for which an ordinary differential equation is a relative
invariant, but this situation occurs also for classical Lie symmetries of differential equations
(for example, the simple case of first-order differential equations).

Telescopic vector fields enlarge the study of the integrability of differential equations.
The interesting observations on nonlocal and contact symmetries done in several papers
[1, 3, 7, 9, 10, 19] can be related to telescopic vector fields. For example, it is well known that
any ordinary differential equation of the first order is invariant under the action of a Lie point
symmetry group (i.e. any first-order ordinary differential equation possesses an integrating
factor) [5, 18]. As regards a second-order differential equation, let us consider

u2 = E(x, u, u1)

whose determining equation for the admitted telescopic vector fields is given by(
ζ (2) − Eu1ζ

(1) − Euη − Exξ
)∣∣

u2=E
≡ 0. (61)

This relationship contains at most the first derivative of the unknown u. Because in (61)
we have to determine the arbitrary element ζ (1)(x, u, u1) any second-order equation may be
(theoretically) reduced by a telescopic vector field with ξ(x, u), η(x, u). This agrees with the
results in [9] (section 5, p 5357) and with the results of [15, 19] where it is shown that all
second-order differential equations are invariant under contact symmetries. Indeed all contact
symmetries are associated with telescopic vector fields, but working with telescopic vector
fields enables the components ξ and η to be chosen such that the computation of the differential
invariants is simplified.

A final remark is that a more geometric theory of telescopic vector fields and λ-symmetries
is surely possible by means of the theory of solvable structures [4, 11] or the theory of coverings
[12]. The direct approach has been adopted here because of its simpler value and accessibility
to a wider readership.
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[8] González-López A 1988 Symmetry and integrability by quadratures of ordinary differential equations Phys.

Lett. A 129 190–4
[9] Govinder K S and Leach P G L 1995 On the determination of non-local symmetries J. Phys. A: Math. Gen. 28

5349–59
[10] Govinder K S and Leach P G L 1997 A group theoretic approach to a class of second-order ordinary differential

equations not possesing Lie point symmetries J. Phys. A: Math. Gen. 30 2055–68
[11] Hartl T and Athorne C 1994 Solvable structures and hidden symmetries J. Phys. A: Math. Gen. 27 3463
[12] Krasil’shchik I S and Vinogradov A V 1989 Nonlocal trends in the geometry of differential equations,
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